Open Access

Headache and comorbidity in children and adolescents

  • Benedetta Bellini1,
  • Marco Arruda2,
  • Alessandra Cescut1,
  • Cosetta Saulle1,
  • Antonello Persico3,
  • Marco Carotenuto4,
  • Michela Gatta5,
  • Renata Nacinovich6,
  • Fausta Paola Piazza7,
  • Cristiano Termine8,
  • Elisabetta Tozzi9,
  • Franco Lucchese10 and
  • Vincenzo Guidetti1Email author
The Journal of Headache and Pain201314:79

https://doi.org/10.1186/1129-2377-14-79

Received: 5 August 2013

Accepted: 17 September 2013

Published: 24 September 2013

Abstract

Headache is one of the most common neurological symptom reported in childhood and adolescence, leading to high levels of school absences and being associated with several comorbid conditions, particularly in neurological, psychiatric and cardiovascular systems. Neurological and psychiatric disorders, that are associated with migraine, are mainly depression, anxiety disorders, epilepsy and sleep disorders, ADHD and Tourette syndrome. It also has been shown an association with atopic disease and cardiovascular disease, especially ischemic stroke and patent foramen ovale (PFO).

Keywords

HeadacheComorbidityChildrenAdolescents

Review

Introduction

Headache is one of the most common somatic complaints in children and adolescents [1]. The prevalence is estimated to be 10–20% in the school-age population, with progressive increase with age, up to values about 27–32% at the age of 13–14 years (considering monthly crisis), 87–94% (considering the presence of headache at least once a year).

Until puberty, it hasn’t been seen gender differences (with a slight male predominance), at a later stage it has been noted an increase among females with a ratio of 2.5:1, except that lasts into adulthood [2, 3]. Prevalence of migraine in the pediatric population ranges from 3,3% to 21,4% and it increases from childhood to adolescence [4].

Children and adolescents with headache, and in particular migraine, have worse outcomes, compared to those without migraine, as far as quality of life and school attendance [5] are concerned and they are more likely to have other somatic symptoms (e.g. abdominal pain) [6], anxiety and mood disorders, such as depression [7, 8]. Due to its negative impact, on the World Health Organization’s ranking of causes of disability, headache disorders are brought into the 10 most disabling conditions for the two genders, and into the five most disabling for women [9].

In fact, primary headaches, and in particular migraine, is associated with several comorbid conditions.

Comorbidity is the presence of coexisting additional condition in a patient with particular disease index, or the association of non-random two disorders [10].

In children and adolescents, headache and migraine are commonly associated with various diseases, such as psychiatric and neurological comorbidity, in particular depression and anxiety, epilepsy, sleep disorders, ADHD. It also has been shown an association with atopy, cardiovascular disease, especially ischemic stroke and PFO [1114].

Headache and psychiatric disorders: anxiety and depression

Since past decades, numerous population- and hospital-based studies have revealed a relationship between migraine or headache and psychopathology in children [1517]. Depression is more prevalent in headache patients than in the headache-free population [18]. Recently, Pavone et al. (2012) [19] studied the frequency of some comorbidities in primary headaches in childhood.

They enrolled two hundred and eighty children (175 males and 105 females), aged 4 to 14 years, affected by primary headaches. In direct interviews, parents and children gave information about the association of their headaches with different conditions. The Authors found a significant association of primary headache with anxiety and depression.

Migraine is probably the best studied pain disorder in the context of comorbidity with anxiety and/or depression [20]. In a psychiatric setting Masi and collegues [21], in an exploratory study, examine the prevalence of somatic symptoms in a sample of 162 Italian children and adolescents from emotional and/or behavioral disorders. The sample was divided according to gender (96 males, 66 females), age (70 children younger and 92 adolescents older than 12 years), and psychiatric diagnosis (Anxiety, Depression, Depression/Anxiety, Other). The Authors observed that headache was the most frequent somatic symptom in children and adolescents referred for anxiety, depression and behavioral disorders, with a prevalence of females.

Cahill and Cannon [22] defined migraine as a subtype of headache of particular interest for psychiatrists, as they found a linkage between migraine, psychiatric disorders (mainly anxiety and depression), personality traits and stress.

The nature of the relationship between migraine and anxiety is still not clear and we do not know if that relationship is specific to migraine or related to attack frequency [23], even if some evidence confirms that linkage [24]. It is well known that the risk of migraine is higher in patients with comorbid anxiety and/or depression [25] and that anxiety predicts the persistence of migraine and tension-type headache [26]. While only phobic disorder seems to be a predictor of the onset of migraine [27], anxiety, more than depression, predicts long-term migraine persistence, headache-related disability and reduces perceptions of efficacy with acute treatment [26, 28]. Phobic disorder is also associated with more frequent and longer migraine attacks, particularly among males [29].

The increased risk of anxiety disorder in children and adolescents with migraine, compared to patients without migraine, is noticed in many studies. Arruda and Bigal [5], in their population-based study, confirmed the higher prevalence of anxious symptoms in children and adolescents with migraine.

In a meta-analysis of 10 studies published between 1996–2011 (406 patients, mean age 11,6 ± 2,3 ys) Ballottin and collegues [23] found that migraine children show more psychological symptoms, detected by using Child Behavior Checklist (CBCL), than healthy controls. They also emphasized the need for studies to compare migraine children with children affected by other chronic pain in order to understand whether the psychopathological profile is migraine- related or chronic pain-related.

Some studies suggest that psychiatric disorders might not specifically relate to migraine, but to chronic illness in general: comparing migraine and chronic non-headache pain samples, Cunningham [30] found no difference in anxiety and depression levels between the two groups with chronic pain, with respect to pain-free controls. Another study [6] comparing headache patients and patients with recurrent abdominal pain did not find differences by the psychological point of view (internalizing vs. externalizing disorders). One of the hypotheses for the comorbidity is that common genetic and/or environmental risk factors may underlie both migraine and psychiatric disorders [27].

Gonda and collegues [31] found that high levels of anxiety and migraine were associated with specific gene polymorphism, supporting the hypothesis of a shared genetic linkage between these two conditions.

Instead other studies show no correlation between migraine, anxiety and depression, as Kowal and Pritchard [32] that studied twenty-three volunteer subjects, compared with 23 (matched) control subjects on self and parental ratings of anxiety, depression, shyness-sensitivity, sleeping difficulties, perfectionism, psychosomatic problems (unrelated to headache), other behavioural disturbances, major life stress events and parental expectations (i.e. achievement orientation). Results indicated that the headache children showed significantly higher shyness-sensitivity, psychosomatic problems and behavioural disturbances and significantly lower parental expectations than the control group children. No other differences were found. While none of the variables were predictive of the frequency or intensity of head pain, measures of anxiety, perfectionism, and life stress events contributed significantly to the prediction of the severity of head pain. Also the study by Laurell et al. [33] show conflicting data. The Authors interviewed 130 schoolchildren and their parents and showed a predominance of comorbidity with other pains rather than psychological and social problems.

In addition to migraine, Chronic daily headache (CDH), defined as 15 or more headaches per month, is associated with increased functional disability and impaired quality of life [34]. Functional disability in children with recurrent headache has also been shown to be a risk factor for psychiatric conditions such as depression [35]. While research in the area of adult headache has made great strides, little is known about the prevalence of psychiatric comorbidity in children with chronic headache conditions. Some researchers have suggested that children with headaches are at increased risk for psychological adjustment problems, including symptoms of anxiety and depression [36, 37]. A single published study of a large sample of school-children in Taiwan that did utilize standardized interviews, written by Wang SJ et al. [15], indicated that nearly half (47%) of the sample of 122 children (out of more than 7000 children) who reported chronic headaches had one or more psychiatric disorders, primarily mood or anxiety disorders. Two years later the same Authors identified a higher frequency of suicidal ideation in younger adolescents with migraine with aura or high headache frequency. These associations were independent of depressive symptoms [38]. Parisi P. [39] stressed that antidepressant and antiepileptic usage in adolescents was potentially associated with an increasing suicide risk and that these two medications are frequently used in adolescents with migraine. Moreover, Wang SJ et al. [38] did not exclude the diagnosis of early onset juvenile bipolar disorders (JBD). Although the onset of JBD before the age of 10 is rare and the first manifestation occurs most frequently between the ages of 13 and 15, the diagnosis of JBD is more difficult in children and adolescent populations vs the adult population due to varying symptoms. For example, in children and adolescents, dysphoria is more likely than a euphoric or depressive mood. Asymptomatic intervals rarely exist, yet rapid cycling prevails. In addition, it has been shown that antidepressants in JBD-affected children can have severe adverse effects, particularly the amplification of suicidal ideation. Parisi P., in this respect, indeed, stressed that the possibilities of manic switching and occurrence of suicidal ideation have to be closely monitored when clinicians prescribe antidepressants for treatment of either migraine or depression in adolescents.

Slater et al. (2012) [34] assessed comorbid psychiatric diagnoses in youth with CDH and examined relationships between psychiatric status and CDH symptom severity, as well as headache-related disability. Results showed that 29.6% of CDH patients met criteria for at least one current psychiatric diagnosis. Of those, anxiety disorders were the most common (16.6% of the sample). Mood disorders, on the other hand, were less prevalent (9.5%). The most common anxiety diagnoses were specific phobia (14 of 169), generalized anxiety disorder (10 of 169) and obsessive compulsive disorder (eight of 169). Of the 16 participants with a depressive disorder diagnosis, eight had major depressive disorder, four had a diagnosis of dysthymia, and four met criteria for other mood disorders.

Moreover, 34.9% met criteria for at least one lifetime psychiatric diagnosis. No significant relationship between psychiatric status and headache frequency, duration, or severity was found. However, children with at least one lifetime psychiatric diagnosis had greater functional disability and poorer quality of life than those without a psychiatric diagnosis.

It is, furthermore, important to consider the impact of headache on family life and dynamics.

Children with migraine seem to be characterized by a higher prevalence of familial headache recurrence and parents’ psychiatric disorders than children with other headache subtypes [40]. Only in the case of migraine, higher familial headache recurrence correlates with higher psychiatric comorbidity in children.

The association between migraine and anxiety leads us to think of the need for an integrated, medical and psychological, approach to the taking care of these young patients and their families.

Headache and sleep disorders

The existence of an intimate relationship between sleep and headache has been recognized for over a century, although the nature of this association is still enigmatic. It is known as sleep deprivation, or, on the contrary, a prolonged sleep, can favor the onset of headache, in particular migraine attack [41]. On the other hand, in many cases, and especially in children, sleep, spontaneous or induced by hypnotics, constitutes the decisive factor for resolution of a migraine attack [42]. Also melatonin seems to effectively reduce the number, intensity and duration of headache attacks per month in the children but the mechanism remains unclear, even though there is much evidence to support the analgesic and anti-inflammatory effects of melatonin [43].

Headaches are known to occur during sleep, after sleep, and in relationship with various sleep stages. Nocturnal migraine attacks can be a result of disrupted sleep, and primary headaches may also emerge during nocturnal sleep, causing sleep disruption [44].

About the variety of phenomena that can disrupt the sleep macrostructure and can impact its restorative function, the periodic limb movements disorder (PLMd) can be considered as the most powerful. No studies are known about the role of PLMd in the pathophysiology of migraine in children. Esposito et al. [45] assess the prevalence of PLMd and migraine and their relationship with disability and pain intensity in a pediatric sample, referred for migraine without aura by pediatricians. This study indicates the potential value of the determination of the PLMd signs, and the importance of the nocturnal polysomnography evaluation in children affected by migraine, particularly when the clinical and pharmacological management tend to fail in the attacks control.

Children who suffer from headache have usually a high rate of sleep difficulties, such as insufficient sleep, co-sleeping with parents, difficulties falling asleep, anxiety related to sleep, restless sleep, night waking, nightmares, and fatigue during the day [46]. Furthermore, an higher prevalence of parasomnias in children, particularly of sleepwalking, bedwetting and pavor, has been documented in migraine patients than in controls [47, 48]. The prevalence of sleepwalking in migraineurs seems to swing between 30% and 55% [49]. Different studies propose a model of interaction between headache and sleep [50]. Table 1 shows a model combining clinical data and experimental evidence.
Table 1

Models of relations between sleep and headache

1

Sleep as trigger factor for headache (excessive, reduced or disrupted, increased deep sleep)

2

Sleep as relieving factor for headache

3

Sleep disturbance as cause of headache (es. sleep apnea)

4

Headache as cause of sleep disturbance (es. attacks occurring during sleep)

5

Sleep disorders in headache patients (parasomnias, sleepwalking)

6

Sleep related headache:

 

a) Temporal relationship (during or after sleep)

 

b) Sleep stage relationship:

 

  1. REM sleep (migraine, cluster headache, chronic paroxysmal hemicrania)

 

  2. Slow-wave sleep (migraine)

7

Headache/sleep association:

 

a) Intrinsic origin (modulation through the same neurotransmitters)

 

b) Extrinsic origin (i.e. fibromyalgia syndrome)

 

c) Reinforcement (bad sleep hygiene)

To date, there are no epidemiological studies to investigate systematically specific comorbidity between headache and the spectrum of sleep disorders. The lack of such studies is compounded by the difficulties of classification of the two disease entities.

Among the epidemiological studies carried out so far, who have analyzed the relationship between sleep and headache, there is a European study, performed by 18,980 telephone interviews. This study showed the presence of chronic headache in the morning in 7.6% of subjects [51]. These, also, than non-sufferers, had more frequently sleep disorders including insomnia, circadian rhythm disorders, snoring, sleep-related breathing disorders, frightening dreams and other dyssomnia.

Headache and epilepsy

Migraine and epilepsy are the commoner brain diseases and comorbidity of these conditions is well known. This comorbidity is most frequent in childhood and adolescence.

The International Classification of Headache Disorders (ICHD-2) committee recognizes three nosographic entities concerning the relationship between epilepsy and headache: migralepsy, hemicrania epileptica, post-ictal headache [52].

Recent scientific evidences on the ictal epileptic headache have demonstrated that the ‘migralepsy’ concept is exceptional or even it does not exist [53]. On the other hand, migralepsy is neither included in the currently used International League Against Epilepsy (ILAE) seizure classification nor in the recent recommendations of the ILAE Commission on Classification and terminology. In particular, migralepsy, which in the recent ICHD-II is defined as a seizure developing during or within 1 h of a migraine aura, is extremely rare. The concept of migralepsy, according to the current definition, is too narrow and inadequate and it should be revised keeping in the mind that headache or visual symptoms can be the epileptic “aura” of a seizure [54].

Parisi et al. [52] suggest to add, to the forthcoming ICHD-3 classification, the term “ictal epileptic headache” (IEH) which defines a condition diagnosed when a headache attack is the only clinical feature of epileptiform discharges [5256].

The classification criteria for “ictal epileptic headache” (IEH), was based on twelve well-documented cases that have been published in the literature. The “migraine-epilepsy” sequence, defined, as said, “migralepsy”, may often merely be a seizure starting with an ictal headache, followed by a sensory-motor partial or generalized seizure, which fits into the codified “Hemicrania Epileptica” [53, 57].

To date, headache and epilepsy classifications have ignored each other. In the International League Against Epilepsy (ILAE) classification, headache is considered exclusively as a possible semiological ictal phenomenon among the “non-motor” features. In particular, headache is described as a “cephalic”sensation and is not considered as the sole ictal expression of an epileptic seizure. Moreover, headache is not classified as a “pain” (among the “somatosensory” features) or “autonomic” sensation, whereas signs of involvement of the autonomic nervous system, including cardiovascular, gastrointestinal, “vasomotor” and thermoregulatory functions, are classified as “autonomic” features. Now, although still considered a controversial issue, we must consider that headache pain could originate in the terminal nervous fibers (“vasomotor”) in cerebral blood vessels; consequently, headache should be classified as an “autonomic” sensation in the ILAE Glossary and Terminology. Headache could thus be interpreted as the sole expression of an epileptic seizure and classified as an autonomic seizure [53].

In according to these criteria, Parisi et al. [58] propose the term “ictal epileptic headache” for cases in which headache is the sole ictal manifestation, whereas the term “ictal headache” should be applied when the headache, whether brief or long-lasting, is part of a more complex seizure including other sequential or overlapping (sensory-motor, psychiatric or non-autonomic) ictal manifestations.

This new classification proposal (headache as an isolated ictal autonomic manifestation in IEH) has very different prognostic implications because the outcome in people with long-lasting autonomic status epilepticus is very different (i.e., benign) from that of people with additional ictal motor-sensitive semiology. In addition, headache as an autonomic phenomenon is crucial when attempting to understand why headache may be the sole ictal epileptic manifestation: the reasons have been thoroughly explained in Panayiotopoulos syndrome, whereas the threshold required to trigger an ictal autonomic phenomenon is believed to be lower than that required to trigger sensitive sensorial or motor ictal semiology [53].

The criteria of IEH have been proposed by Belcastro et al. [59] to identify the case of headache (as sole ictal manifestation) of epileptic origin in order to promptly obtain an EEG recording and confirm the diagnosis. Table 2, taken from the paper of Parisi et al. [52], shows the proposed criteria for ictal epileptic headache (Diagnostic criteria A–D must all be fulfilled to make a diagnosis of ‘IEH’).
Table 2

Proposed criteria for ictal epileptic headache (IEH)

A.

Headache lasting seconds, minutes, hours or days;

B.

Headache that is ipsilateral or contralateral to lateralized ictal epileptiform EEG discharges (if EEG discharges are lateralized);

C.

Evidence of epileptiform (localized, lateralized or generalized) discharges on scalp EEG concomitantly with headache; different types of EEG anomalies may be observed (generalized spike-and-wave or polyspike-and-wave, focal or generalized rhythmic activity or focal subcontinuous spikes or theta activity that may be intermingled with sharp waves) with or without photoparoxysmal response (PPRs)

D.

Headache resolves immediately after i.v. antiepileptic medication

This clinical picture is extremely rare and has only been documented in about 10–12 cases and its epileptic nature is documented with ictal EEG. For this reason, it is difficult to obtain firm conclusions about the frequency of IEH based on epidemiological studies. Using these criteria, we will be able to clarify if IEH represents an underestimated phenomenon or not [59].

Regarding the third entity concerning the relationship between epilepsy and headache, the post-ictal headache, a multicentric italian study from 2006 at 2009 on 142 children, shows that post-ictal headaches were most frequent (62%). Pre-ictal headaches were less common (30%). Inter-ictal headaches were described in 57.6%. Clear migrainous features were present in 93% of pre-ictal and 81.4% of post-ictal headaches. Inter-ictal headaches meet criteria for migraines in 87%. The association between partial epilepsy and migraine without aura is most common and reported in 82% of our patients with peri ictal headache and in 76.5% of patients with post-ictal headache [60]. The term “hemicrania epileptica” should be maintained in the ICHD-II, introduced into the ILAE, and be used to classify all cases in which an “ictal epileptic headache” “coexists” and is associated synchronously or sequentially with other ictal sensory-motor events [55].

As regards the possible causes of comorbidity, the first hypothesis provides a causal relationship of migraine and epilepsy, which seems, however, unlikely considering that some epileptic syndromes such as benign partial epilepsies are observed more frequently [61]. If the association of the two disorders were purely random, the expected prevalence of epilepsy was 1% in migraineurs and the prevalence of migraine was 12% in epileptics, while the literature reports prevalence data significantly higher than expected on basis of random association. The risk for unprovoked seizures was increased in children with migraine with aura and not in patients with migraine without aura [62].

Several epidemiological studies indicate an association of migraine and epilepsy with an increased prevalence of migraine in patients with epilepsy and vice versa. In particular, the prevalence of epilepsy in patients with migraine varies from 1 to 17%, with an average of 5.9%, but this percentage greatly exceeds that of the general population that is approximately 0.5–1%.

The overall prevalence of migraine in children with epilepsy varies from 8 to 15%, with values also increased in children with central-temporal EEG spikes (63%) and epilepsy with absences (33%) [63, 64]. The risk of migraine is more than twice as high in subjects with epilepsy both in probands than in relatives, compared to people without epilepsy [65].

As a second hypothesis has been suggested a causal unidirectional relationship, for instance in case of migraine can cause cerebral ischemia or cerebral damage, and consequently epilepsy, or in the case of "migralepsy", where migraine aura can trigger a seizure. More often a seizure triggers an attack of headache post-critical, often with migraine characteristics, in this case it has been hypothesized that epilepsy can trigger migraines through activation of the trigeminal-vascular system or through mechanisms-encephalic trunk [66].

However, the unidirectional hypothesis has been contradicted in a study for verified the relationship between migraine and epilepsy in 395 adult seizure patients, conducted by Marks et al. [67], since in the majority of patients with migraine and epilepsy (66/79, 84%) attacks were completely independent. A third hypothesis requires that common environmental risk factors, such as head injury, can cause both migraine and epilepsy. In fact, it has been found an increased risk of migraine in people with epilepsy caused by head trauma, and that in each subgroup of epilepsy, defined on the basis of seizure type, age at onset, etiology, and family history [68]. On the other hand, the presence of shared environmental factors do not explain the increased risk of migraine in patients with idiopathic epilepsy and several studies have documented the association between migraine and rolandic epilepsy and idiopathic occipital epilepsy [69, 70].

Headache may occur before, during or after an epileptic seizure, as well as vomiting. In idiopathic occipital epilepsy, crises are, in fact, often characterized by vomiting associated with visual symptoms, focal seizures and headache.

The existence of a possible constitutional common ground between migraine and epilepsy was initially proposed on the basis of significantly greater familiarity of migraine in epileptics (28%) and for epilepsy in migraineurs (2–3%) [70].

The genetic hypothesis (fourth hypothesis) was tested by Ottman et al. [65], which have suggested a higher incidence of migraine in families with genetic forms of migraine than those with non-genetic forms and that the relatives of patients with migraine and epilepsy had an increased incidence of epilepsy compared to the relatives of patients with only epilepsy. However, this hypothesis was not confirmed by other studies [68].

Subsequent work reported data in favor of possible genetic factors common to the two conditions. In fact, in some families with idiopathic temporal lobe epilepsy was found a higher prevalence of migraine [71, 72]. An extended family with several individuals with occipital and temporal lobe epilepsy was also featured, which segregated with an autosomal dominant mode of transmission; epileptic patients had migraines with aura are independent of seizures [73].

Most obvious is the association between migraine with aura (MWA) and epilepsy. In fact, in a study of 134 children and adolescents with headache, there was a high prevalence of MWA (30.4%) than other types of primary headache in children with seizures [74]. Another study of population-based case–control study documented that the risk of seizures was increased in children with MWA and not in those with migraine without aura (MOA) [75]. In addition, in a study of adult patients, the frequency of MWA was significantly higher in patients with epilepsy in comorbidity (41%) compared to patients only with migraine (25.8%) [76].

Finally, considering the comorbidities as a result of an alteration in brain excitability, Leninger et al. [76] investigated whether the clinical features associated with diffuse cortical depression (the so-called “Spreading Depression,” CSD) were more severe in patients with comorbidities. Despite the frequency of epileptic seizures and syndromes did not differ between patients with epilepsy alone, compared to subjects with comorbidy, migraine with aura, worsening pain with physical activity, phonophobia and photophobia were significantly more frequent in patients with comorbidities compared with patients with epilepsy or migraine alone.

These differences are in favor of the hypothesis that the link between migraine and epilepsy is based on the CSD as an expression of neuronal hyperexcitability. The altered neuronal excitability may cause an increased sensitivity to the CSD resulting in an increased activation of the trigeminal nociceptive fibers and consequently in more severe migraine attacks [76].

Therefore it is likely that the altered neuronal excitability threshold, involved in migraine and epilepsy, and due to altered levels of neurotransmitters, is attributable to genetic factors, in particular the disorders of membrane ion channels, the so-called channelopathies.

The epilepsy and migraine, in fact, share common pathogenetic mechanisms partially related to the dysfunction of ion channels, it is assumed, therefore, that channelopathies may be the link between epilepsy and migraine, particularly when these disturbances are in comorbidy.

However, when headache and epilepsy overlap as a result of the crossing of the cascade of events at the cortical level, in both of the events (CSD and epileptic focus), their onset and propagation are triggered when these events reach a certain threshold, which is lower for CSD than for seizure. These two phenomena may be triggered by more than one pathway converging (at cortical level) upon the same destination: depolarization and hypersynchronization [53].

Finally, further studies are warranted to better delineate the complex link between epilepsy and migraine.

Headache and general medical conditions

Compared to comorbidity between headache and general medical conditions, an interesting epidemiological study, led by Lateef et al. [77] on the child population, highlights the correlation between headache and other general medical conditions, including asthma, hay fever and frequent ear infections. The 41.6% of children with headache had at least one of these conditions, and in general, the group examined had a probability of 3.2 times higher to present two of the above conditions and a probability of 13.6 times greater to submit all three. The increased comorbidity between headache and general medical conditions was found from 4 to 11 years.

Other conditions most frequently observed in children with frequent or severe headaches are: ADHD, especially as regards hyperactive/impulsive behavior [78], learning disabilities, stuttering, anemia, obesity, bowel disease. Regarding the girls, it was found that most of those who had frequent headaches had their first menstrual cycle before the age of 12 years [77].

It was also found a higher comorbidity of headache, in particular migraine, with atopic disorders (asthma, rhinitis or eczema), studied in a sample of children presenting with such disorders. The prevalence of migraine was significantly higher in children with atopic disorders than those without. In particular, the greater association was detected with rhinitis [12].

Recent researches suggest that obesity was significantly correlated with migraine frequency and disability in children, as well as in adult population studies. Translational and basic science research shows multiple areas of overlap between migraine pathophysiology and the central and peripheral pathways regulating feeding. Specifically, neurotransmittors such as serotonin, peptides such as orexin, and adipocytokines such as adiponectin and leptin have been suggested to have roles in both feeding and migraine. A relationship between migraine and body mass index exists, and therefore, interventions to modify body mass index may provide a useful treatment model for investigating whether modest weight loss reduces headache frequency and severity in obese migraineurs [79].

The effect of obesity and weight change on headache outcomes may have important implications for clinical care.

Recently, Verrotti et al. [80] investigated the real impact of a weight loss treatment on headache in a sample of obese adolescents. In all, 135 migraineurs, aged 14–18 years, with body mass index (BMI) greater than or equal 97th percentile, participating in a 12-month-long program, were studied before and after treatment. The program included dietary education, specific physical training, and behavioral treatment.

Decreases in weight, BMI, waist circumference, headache frequency and intensity, use of acute medications, and disability were observed at the end of the first 6-month period and were maintained through the second 6 months. Both lower baseline BMI and excess change in BMI were significantly associated with better migraine outcomes 12 months after the intervention program.

So, initial body weight and amount of weight loss may be useful for clinicians to predict migraine outcomes [80].

Headache and cerebro and cardio-vascular diseases

Although migraine is an accepted cause of cerebral infarction in adults, this association is not recognized in children. The mean annual incidence of stroke in children is about 2.5 per 100,000 [78].

The causes of cerebral infarction in children may include: heart disease, vascular disease, blood disorders, primary hypercoagulable states or congenital metabolic disorders, but 50% of strokes are considered idiopathic [81].

In the adult population is generally accepted that cerebral infarction may occur during a migraine attack [82]. In young adults, ischemic strokes could be the result of migraine in a percentage ranging from 10% to 27% [83]. In contrast, in children, the diagnosis of stroke caused by migraine is still questioned, in fact, until now, only a few cases have been reported in subjects under the age of 16 years [84, 85]. In most patients, the ischemic stroke occurred in a middle cerebral artery territory [85] but may be involved also areas of the brain sprayed from basic.

In particular, there appears to be a complex relationship in a bidirectional association between migraine and stroke, including migraine as a risk factor for cerebral ischemia, migraine caused by cerebral ischemia, migraine as a cause of stroke, the presence of a common cause for migraine and cerebral ischemia or migraine associated with subclinical vascular injury of the brain.

Some studies of young adults seem to confirm this association [86, 87]. A history of migraine with aura seems to be more common among victims of ischemic stroke than among controls and an acute attack of migraine may precede, accompany or follow a thromboembolic transient ischemic attack or a stroke, this seems to occur more often among migraineurs compared patients without migraine [88, 89]. Adults suffering from migraine with aura are at increased risk of cardiovascular disease and stroke [90], but it is necessary to consider that in adults, the analysis of this association is complicated by a frequent presence of additional risk factors such as smoking, hypertension and diabetes mellitus. In children, these and other potential confounding factors are much less common. There are relationships arising from small clinical samples of pediatric age who demonstrate the association of migraine with dyslipidemia [91], hyperhomocysteinemia and genetic variants related to homocysteine which appear to be risk factors for the development of stroke in children [92].

Furthermore, in a national representative sample of children, the severe or recurrent headache was associated with higher levels of adiposity measured by the body mass index (BMI) [77].

In general, below the age of 55, migraine with aura is a risk factor for ischemic strokes. However, it’s important to point out that part of the latter, can be linked to the presence of a patent foramen ovale (PFO).

The PFO is the result of incomplete fusion of the septum “primum” and “secundum”, which normally occurs shortly after birth, when the left atrial pressure exceeds that of the right atrium.

Epidemiological studies have shown a clear comorbidity between migraine with aura and PFO. In fact, the available data suggest that PFO is more common in women with migraine with aura (present in about 50% of cases) and that migraine with aura is more common in patients with PFO [9395]. The mechanism underlying the possible relationship between migraine and PFO is not yet very clear: is there a causal relationship with migraine attacks, or have common genetic factors? The pathophysiological mechanism is considered a passage of microemboli and vasoactive chemicals through the PFO, which would circumvent the filtering pulmonary triggering migraine symptoms. The widespread cortical depression, which is the mechanism behind the migraine aura, could be favored by the presence of a PFO. Among the various hypotheses, it seems interesting to Pierangeli et al., who claim that a particular genetic predisposition could lead to a co-development of atrial septal abnormalities and migraine [96]. In fact, if the aura has occurred due to a malfunction of the cerebral perfusion, the symptoms should occur with a sudden onset and not gradual. It’s likely that the association of migraine and PFO is random, given the frequency of both disorders.

Recently, Steenblik et al. [97] sought to examine the familial risk of isolated interatrial shunt, caused by either atrial septal defect or patent foramen ovale, and explore associated comorbidities of stroke, transient ischemic attack (TIA), and migraine using a population database.

They found that there is a strong familial inheritance pattern for isolated interatrial shunt, with significantly higher risk of interatrial shunt among affected patients’ siblings, first-, and second-degree relatives. Relatives of affected individuals also had a higher risk of TIA, a trend toward an increased risk for stroke, but no increased risk of migraine headache.

The relevance of genetic factors with respect to the preparation and transmission of PFO and migraine with aura is still under discussion [98100].

Headache and tourette syndrome

Tourette syndrome (TS) is recognized as one of the most common childhood movement disorders, characterized by motor and phonic tics often associated with neurobehavioral comorbidities, such as obsessive-compulsive disorder. Neurotransmitter dysregulation, particularly involving the serotonin system, has been implicated in the pathogenesis of TS, obsessive-compulsive disorder, and migraine headache. The frequency of migraine headache in a clinic sample of TS subjects was nearly 4-fold more than the frequency of migraines reported in general population. In particular, of 100 patients with TS, 25 (25.0%) satisfied the diagnostic criteria for migraine headache, significantly greater than the estimated 10% to 13% in general adult population and the estimated 2% to 10% in general pediatric population [101].

The first study that has examined the comorbidity between Tourette syndrome and headache was conducted by Barabas et al. (1984) [102]. The authors studied the incidence of migraine among children with Tourette’s Syndrome (TS). Among 60 children with TS (mean age of 11.9 yrs), migraine was prevalent in 26.6%. This figure is substantially greater than that reported for general population of school-aged children (4.0–7.4%) or for 2 control groups consisting of 72 children with seizure disorders and 62 children with learning disabilities. The prevalence rates for these two control groups were 11.3% and 8.0%, respectively.

Subsequently, in 1986, Lacey D.J. [103] have shown a correlation between Tourette’s syndrome and several other disorders in children, including: thought and behavioral disorders, sleep disturbances, headaches, and school difficulties-including attention deficit disorder.

A recent study of Ghosh et al. (2012) [104] analyzed the frequency of occurrence of headaches in children and adolescents with TS to address their possible inclusion as a comorbidity.

Using a prospective questionnaire, administered directly, the author interviewed a total sample size of 109 patients with TS ≤21 years of age. The questionnaires were then analyzed according to the International Headache Society’s diagnostic criteria. The author found that headaches were present in 55% of patients, with two most common headache types being migraine headaches and tension-type headaches. The rate of migraine headache within the TS group was found to be 4 times greater than that of general pediatric population, as reported in literature. In addition, the rate of tension-type headache was found to be more than 5 times greater than that of general pediatric population. Overall, the high rates of migraine and tension-type headache within this population support the proposition that headaches are a comorbidity of TS.

Headache and ADHD

Primary headache syndromes (eg, migraine and tension-type headache [TTH]) and attention-deficit/hyperactivity disorder (ADHD) are prevalent in childhood and may cause impairment in social and academic functioning.

In particular, Migraine and ADHD are highly prevalent, affecting between 5 to 10% of the pediatric population [4, 105]. Coincidentally, the burden caused by both neuropsychiatric disorders reaches a common range of negative outcomes impairing quality of life [106, 107], school achievement [108, 109], social [7, 110], and family functioning [111, 112]. Thus, studying the association of both conditions is of utmost clinical importance.

According to a systematic review of clinical studies on psychological functioning and psychiatric comorbidity of migraine in children, there is no evidence that ADHD is more frequently diagnosed in this group compared with no headache controls [7].

In a cross-sectional epidemiological study specifically designed to examine this association, we have found that migraine are not comorbid to ADHD overall, but are comorbid to hyperactive-impulsive behavior [88]. In this study ADHD was assessed according to the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria by the validated Brazilian version of the Multimodal Treatment Study of Children with ADHD – Swanson, Nolan, and Pelham IV (MTA-SNAP-IV) scale [113] fulfilled by parents and teacher. Mental health status was assessed with the validated Brazilian version of the Child Behavior Checklist (CBCL) [114]. The prevalence of ADHD was not significantly different comparing children with migraine to controls (no headache). For inattention symptoms, no significant differences were found. The prevalence of hyperactivity-impulsivity symptoms was 8.1% in children without headache, 23.7% in children with migraine (relative risk [RR] = 2.6; 95% confidence interval [CI] = 1.6–4.2), and 18.4% in children with probable migraine (RR = 2.1; 95% CI = 1.4–3.2). According to the multivariate analyses, ADHD or inattention symptoms were not predicted by headache subtypes or headache frequency. On the other hand, hyperactivity-impulsivity symptoms were significantly associated with any headache (p < 0.01), tension-type headache (TTH) (p < 0.01), or migraine (p < 0.001) [88].

An association between childhood migraine and inattention symptoms have been reported by some populational [115, 116] and clinical [6] studies. However, the findings must be understood in the context of some methodological limitations. The behavior rating scales adopted by these studies add symptoms of inattention and hyperactivity/impulsivity in the same domain preventing the distinction between them. Among the 11 questions comprising the attention domain in the CBCL, only three capture symptoms of inattention (“Can’t concentrate, can’t pay attention for long”, “Daydreams or gets lost in his/her thoughts”, and “Stares blankly“). The remaining questions focus on hyperactivity, impulsivity, executive dysfunctions and lack of coordination (“Acts too young for his/her age”, “Can´t sit still, restless, or hyperactive”, “Confused or seems to be in a fog”, “Impulsive or acts without thinking”, “Nervous, high strung, or tense”, “Nervous movements or twitching”, “Poor school work”, and “Poorly coordinated or clumsy”) [117]. Likewise, of the five questions that encompass the hyperactivity scale of the Strengths and Difficulties Questionnaire (SDQ), two are destined to identify inattention symptoms and three to hyperactivity/impulsivity [118]. Adopting the MTA-SNAP-IV scale we could separate both dimensions of ADHD symptoms in our study [88].

In accordance to our findings, neuropsychological studies with clinical samples have found no attentional impairment in children with migraine compared to controls, in spite of a rather impulsive response profile [119121].

Given the possible comorbidity between migraine and hyperactivity-impulsivity symptoms, providers and educators should be aware of the association.

Conclusions

Primary Headaches In Childhood and Adolescence are often associated with,and deeply influnced by,many comorbid situations.

In this review are analyzed the most relevant of them.

It is foundamental to take care of any kind of comorbidity to establish the most effective treatment strategy.

Declarations

Authors’ Affiliations

(1)
Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome
(2)
Riberao Preto
(3)
University “Campus Biomedico”
(4)
II University of Naples
(5)
Padua University
(6)
San Gerardo Hospital University of Milano-Bicocca
(7)
Mondino Institute, Pavia University
(8)
Insubria University
(9)
L’Aquila University
(10)
Department of Dynamic and Clinical Psychology, Sapienza University of Rome

References

  1. Perquin CW, Hazebroek-Kampschreur AA, Hunfeld JA, Bohnen AM, van Suijlekom-Smith LW, Passchier J, van der Wouden JC: Pain in children and adolescents: a common experience. Pain 2000, 87: 51–58. 10.1016/S0304-3959(00)00269-4PubMedGoogle Scholar
  2. Guidetti V: Fondamenti di neuropsichiatria dell’infanzia e dell’adolescenza. Bologna: Il Mulino; 2005.Google Scholar
  3. Guidetti V, Lucchese F, Bellini B: Is the migrainous female brain different? Some new evidence. Brain 2012,135(Pt 8):2311–2313.PubMedGoogle Scholar
  4. Abu-Arafeh I, Razak S, Sivaraman B, Graham C: Prevalence of headache and migraine in children and adolescents: a systematic review of popolation-based studies. Dev Med Child Neurol 2010, 52: 1088–1097. 10.1111/j.1469-8749.2010.03793.xPubMedGoogle Scholar
  5. Arruda MA, Bigal ME: Behavioral and emotional symptoms and primary headaches in children: a population-based study. Cephalalgia 2012, 32: 1093–1100. 10.1177/0333102412454226PubMedGoogle Scholar
  6. Galli F, D’Antuono G, Tarantino S, Viviano F, Borrelli O, Chirumbolo A, Cucchiara S, Guidetti V: Headache and recurrent abdominal pain: a controlled study by the means of the child behavior checklist (CBCL). Cephalalgia 2007, 27: 211–219. 10.1111/j.1468-2982.2006.01271.xPubMedGoogle Scholar
  7. Bruijn J, Locher H, Passchier J, Dijkstra N, Arts WF: Psychopathology in children and adolescents with migraine in clinical studies: a systematic review. Pediatrics 2010, 126: 323–332. 10.1542/peds.2009-3293PubMedGoogle Scholar
  8. Virtanen R, Aromaa M, Koskenvuo M, Sillanpää M, Pulkkinen L, Metsähonkala L, Suominen S, Rose RJ, Helenius H, Kaprio J: Externalizing problem behaviors and headache: a follow up study of adolescent Finnish twins. Pediatrics 2004, 114: 981–987. 10.1542/peds.2003-1103-LPubMedGoogle Scholar
  9. Lj S, Hagen K, Jensen R, Katsarava Z, Lipton R, Scher A, Steiner T, Zwart JA: The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 2007,27(3):193–210. 10.1111/j.1468-2982.2007.01288.xGoogle Scholar
  10. Feinstein AR: The pre-therapeutic classification of comorbidity in chronic disease. J Chronic Dis 1970, 23: 455–468. 10.1016/0021-9681(70)90054-8Google Scholar
  11. Chen TC, Leviton A: Asthma and eczema in children born to women with migraine. Arch Neurol 1990, 47: 1227–1230. 10.1001/archneur.1990.00530110087022PubMedGoogle Scholar
  12. Mortimer MJ, Kay J, Gawkrodger DJ, Jaron A, Barker DC: The prevalence of headache and migraine in atopic children: an epidemiological study in general practice. Headache 1993,33(8):427–431. 10.1111/j.1526-4610.1993.hed3308427.xPubMedGoogle Scholar
  13. Breslau N, Davis GC, Andreski P: Migraine, psychiatric disorders, and suicide attempts: en epidemiological study of young adults. Psychiatry Res 1991, 37: 11–23. 10.1016/0165-1781(91)90102-UPubMedGoogle Scholar
  14. Guidetti V, Galli F: Psychiatric comorbidity in chronic daily headache: pathophysiology, etiology, and diagnosis. Curr Pain Headache Rep 2002,6(6):492–497. 10.1007/s11916-002-0069-7PubMedGoogle Scholar
  15. Wang SJ, Juang KD, Fuh JL, Lu SR: Psychiatric comorbidity and suicide risk in adolescents with chronic daily headache. Neurol 2007,68(18):1468–1473. 10.1212/01.wnl.0000260607.90634.d6Google Scholar
  16. Amouroux R, Rousseau-Salvador C: Anxiety and depression in children and adolescents with migraine: a review of the literature. Encephale 2008,34(5):504–510. 10.1016/j.encep.2007.08.005PubMedGoogle Scholar
  17. Margari F, Lucarelli E, Craig F, Petruzzelli MG, Lecce PA, Margari L: Psychopathology in children and adolescents with primary headaches: categorical and dimensional approaches. Cephalalgia 2013. Epub ahead of printGoogle Scholar
  18. Gesztelyi G: Primary headache and depression. Orv Hetil 2004,28 145(48):2419–2424.Google Scholar
  19. Pavone P, Rizzo R, Conti I, Verrotti A, Mistretta A, Falsaperla R, Pratico AD, Grosso G, Pavone L: Primary headaches in children: clinical findings on the association with other conditions. Int J Immunopathol Pharmacol 2012,25(4):1083–1091.PubMedGoogle Scholar
  20. Ligthart L, Gerrits MMJG, Boomsma DI, Penninx BWJH: Anxiety and depression are associated with migraine and pain in general: an investigation of the interrelationships. J Pain 2013, 14: 363–370. 10.1016/j.jpain.2012.12.006PubMedGoogle Scholar
  21. Masi G, Favilla L, Millepiedi S, Mucci M: Somatic symptoms in children and adolescents referred for emotional and behavioral disorders. Psychiatry 2000, 63: 140–149.PubMedGoogle Scholar
  22. Cahill CM, Cannon M: The longitudinal relationship between comorbid migraine and psychiatric disorder. Cephalalgia 2005, 25: 1099–1100. 10.1111/j.1468-2982.2005.00982.xPubMedGoogle Scholar
  23. Ballottin U, Chiappedi M, Rossi M, Termine C, Nappi G: Childhood and adolescent migraine: a neuropsychiatric disorder? Med Hypotheses 2011, 76: 778–781. 10.1016/j.mehy.2011.02.016Google Scholar
  24. Mitsikostas DD, Thomas AM: Comorbidity of headache and depressive disorders. Cephalalgia 1999, 19: 211–219. 10.1046/j.1468-2982.1999.019004211.xPubMedGoogle Scholar
  25. Merikangas KR, Angst J, Isler H: Migraine and psychopathology. Results of the Zurich cohort study of young adults. Arch Gen Psychiatry 1990, 47: 849–853. 10.1001/archpsyc.1990.01810210057008PubMedGoogle Scholar
  26. Guidetti V, Galli F, Fabrizi P, Giannantoni AS, Napoli L, Bruni O, Trillo S: Headache and psychiatric comorbidity: clinical aspects and outcome in a 8-year follow-up study. Cephalalgia 1998, 18: 455–462. 10.1046/j.1468-2982.1998.1807455.xPubMedGoogle Scholar
  27. Antonaci F, Nappi G, Galli F, Manzoni GC, Calabresi P, Costa A: Migraine and psychiatric comorbidity: a review of clinical findings. J Headache Pain 2011, 12: 115–125. 10.1007/s10194-010-0282-4PubMed CentralPubMedGoogle Scholar
  28. Lantéri-Minet M, Radat F, Chautart MH, Lucas C: Anxiety and depression associated with migraine: Influence on migraine subjects’ disability and quality of life, and acute migraine management. Pain 2005, 118: 319–326. 10.1016/j.pain.2005.09.010PubMedGoogle Scholar
  29. Smitherman TA, Kolivas ED, Bailey JR: Panic Disorder and migraine: comorbidity, mechanism, and clinical implications. Headache 2013, 53: 23–45. 10.1111/head.12004PubMedGoogle Scholar
  30. Cunningham SJ, McGrath PJ, Ferguson HB, Humpreys P, D’Astous J, Je L, et al.: Personality and behavioral characteristics in pediatric migraine. Headache 1987, 27: 16–20. 10.1111/j.1526-4610.1987.hed2701016.xPubMedGoogle Scholar
  31. Gonda X, Rihmer Z, Juhasz G, Zsombok T, Bagdy G: High anxiety and migraine are associated with s allele of the 5 HTTLPR gene polymorphism. Psychiatry Res 2007, 149: 261–266. 10.1016/j.psychres.2006.05.014PubMedGoogle Scholar
  32. Kowal A, Pritchard D: Psychological characteristics of children who suffer from headache: a research note. J Child Psychol Psychiatry 1990,31(4):637–649. 10.1111/j.1469-7610.1990.tb00803.xPubMedGoogle Scholar
  33. Laurell K, Larsson B, Eeg-Olofsson O: Headache in schoolchildren: association with other pain, family history and psychosocial factors. Pain 2005,15 119(1–3):150–158. Epub 2005 Nov 17Google Scholar
  34. Slater SK, Kashikar-Zuck SM, Allen JR, LeCates SL, Kabbouche MA, O’Brien HL, Hershey AD, Powers SW: Psychiatric comorbidity in pediatric chronic daily headache. Cephalalgia 2012,32(15):1116–1122. 10.1177/0333102412460776PubMed CentralPubMedGoogle Scholar
  35. Lewandowski AS, Palermo TM, Peterson CC: Age dependent relationships among pain, depressive symptoms, and functional disability in youth with recurrent headaches. Headache 2006, 46: 656–662. 10.1111/j.1526-4610.2006.00363.xPubMedGoogle Scholar
  36. Pakalnis A, Butz C, Splaingard D, Kring D, Fong J: Emotional problems and prevalence of medication overuse in pediatric chronic daily headache. J Child Neurol 2007, 22: 1356–1359. 10.1177/0883073807307090PubMedGoogle Scholar
  37. Puca F, Genco S, Prudenzano MP, Savarese M, Bussone G, D’Amico D, Cerbo R, Gala C, Coppola MT, Gallai V, Firenze C, Sarchielli P, Guazzelli M, Guidetti V, Manzoni G, Granella F, Muratorio A, Bonuccelli U, Nuti A, Nappi G, Sandrini G, Verri AP, Sicuteri F, Marabini S: Psychiatric comorbidity and psychosocial stress in patients with tension- type headache from headache centers in Italy. The italian collaborative group for the study of psychopathological factors in primary headaches. Cephalalgia 1999, 19: 159–164. 10.1046/j.1468-2982.1999.019003159.xPubMedGoogle Scholar
  38. Wang SJ, Fuh JL, Juang KD, Lu SR: Migraine and suicidal ideation in adolescents aged 13 to 15 years. Neurol 2009, 72: 1146–1152. 10.1212/01.wnl.0000345362.91734.b3Google Scholar
  39. Parisi P: Migraine and suicidal ideation in adolescents aged 13 to 15 years. Neurology 2009,17;73(20):1713. author reply 1713–4Google Scholar
  40. Galli F, Canzano L, Scalisi TG, Guidetti V: Psychiatric disorders and headache familial recurrence: a study on 200 children and their parents. J Headache Pain 2009, 10: 187–197. 10.1007/s10194-009-0105-7PubMed CentralPubMedGoogle Scholar
  41. Bellini B, Panunzi S, Bruni O, Guidetti V: Headache and sleep in children. Curr Pain Headache Rep 2013,17(6):335.PubMedGoogle Scholar
  42. Stovner LJ, Hagen K, Jensen R, Katsarava Z, Lipton RB, Scher AI, Steiner TJ, Zwart JA: The global burden of headache: a documentation of headache prevalence and disability worldwide. Cephalalgia 2003, 23: 786–789.Google Scholar
  43. Miano S, Parisi P, Pelliccia A, Luchetti A, Paolino MC, Villa MP: Melatonin to prevent migraine or tension-type headache in children. Neurol Sci 2008,29(4):285–287. 10.1007/s10072-008-0983-5PubMedGoogle Scholar
  44. Alberti A: Headache and sleep. Sleep Med Rev 2006, 10: 431–437. 10.1016/j.smrv.2006.03.003PubMedGoogle Scholar
  45. Esposito M, et al.: Migraine and periodic limb movement disorders in sleep in children: a preliminary case–control study. TJHP 2013, 14: 57.Google Scholar
  46. Miller VA, Palermo TM, Powers SW, et al.: Migraine headaches and sleep disturbances in children. Headache 2003, 43: 362–368. 10.1046/j.1526-4610.2003.03071.xPubMedGoogle Scholar
  47. Barbas G, Ferrari M, Mattews WS: Childhood migraine and sonnambulism. Neurol 1983, 33: 948–949. 10.1212/WNL.33.7.948Google Scholar
  48. Pradalier A, Goround M, Dry J: Sonnambulism, migraine and propanolol. Headache 1987, 27: 143–145. 10.1111/j.1526-4610.1987.hed2703143.xPubMedGoogle Scholar
  49. Bruni O, Fabrizi P, Ottaviano S, Cortesi F, Giannotti F, Guidetti V: Prevalence of Sleep disorders in childhood and adolescences with headache: a case–control study. Cephalalgia 1997,17(4):492–498. 10.1046/j.1468-2982.1997.1704492.xPubMedGoogle Scholar
  50. Paiva T, Batista A, Martins P, Martins A: The relationship between headaches and sleep disturbances. Headache 1995, 35: 590–596. 10.1111/j.1526-4610.1995.hed3510590.xPubMedGoogle Scholar
  51. Ohayon MM: Prevalence and risk factors of morning headache in the general population. Arch Intern Med 2004, 164: 97–102. 10.1001/archinte.164.1.97PubMedGoogle Scholar
  52. Parisi P, Striano P, Kasteleijn-Nolst Trenite’ DGA, Verrotti A, Martelletti P, Villa MP, Belcastro V: Ictal epileptic headache: recent concepts for new classifications criteria. Cephalalgia 2012,32(9):723–724. 10.1177/0333102412447536PubMedGoogle Scholar
  53. Parisi P, Striano P, Belcastro V: The crossover between headache and epilepsy. Expert Rev Neurother 2013,13(3):231–233. 10.1586/ern.13.16PubMedGoogle Scholar
  54. Belcastro V, Striano P, Kasteleijn-Nolst Trenite DGA, Villa MP, Parisi P: Migralepsy, hemicrania epileptica, post-ictal headache and “ictal epileptic headache”: a proposal for terminology and classification revision. J Headache Pain 2011, 12: 289–294. 10.1007/s10194-011-0318-4PubMed CentralPubMedGoogle Scholar
  55. Kasteleijn-Nolst Trenitè DGA, Parisi P: “Migralepsy”: a call for revision of the definition. Epilepsia 2010,51(5):932–933. 10.1111/j.1528-1167.2009.02407.xPubMedGoogle Scholar
  56. Verrotti A, Striano P, Belcastro V, Matricardi S, Villa MP, Parisi P: Migralepsy and related conditions: advances in pathophysiology and classification. Seizure 2011, 20: 271–275. 10.1016/j.seizure.2011.02.012PubMedGoogle Scholar
  57. Verrotti A, Coppola G, Di Fonzo A, Tozzi A, Spalice A, Aloisi P, Bruschi R, Iannetti R, Villa MP, Parisi P: Should “migralepsy” be considered an obsolete concept ? A multicenter retrospective clinical/EEG study and review of the literature. Epilep Behav 2011, 21: 52–59. 10.1016/j.yebeh.2011.03.004Google Scholar
  58. Parisi P, Striano P, Verrotti A, Villa MP, Belcastro V: What have we learned about “ictal epileptic headache”? Seizure 2013, 22: 253–258. 10.1016/j.seizure.2013.01.013PubMedGoogle Scholar
  59. Belcastro V, Striano P, Parisi P: Ictal epileptic headache”: beyond the epidemiological evidence, published as “invited editorial. Epilep Behav 2012, 25: 9–10. 10.1016/j.yebeh.2012.07.002Google Scholar
  60. Verrotti A, Coppola G, Spalice A, Di Fonzo A, Bruschi R, Tozzi E, Iannetti P, Villa MP, Parisi P: “Peri-ictal and inter-ictal headache in children and adolescents with idiopathic epilepsy: a multicenter cross-sectional study”. Childs Nerv Syst 2011, 27: 1419–1423. published 10.1007/s00381-011-1428-7PubMedGoogle Scholar
  61. De Romanis F, Buzzi MG, Cerbo R, Feliciani M, Assenza S, Agnoli A: Migraine and epilepsy with infantile onset and electroencephalographic findings of occipital spike-wave complexes. Headache 1991, 31: 378–383. 10.1111/j.1526-4610.1991.hed3106378.xPubMedGoogle Scholar
  62. De Simone R, Ranieri A, Marano E, Beneduce L, Ripa P, Bilo L, Meo R, Bonavita V: Migraine and epilepsy: clinical and pathophysiological relations. Neurol Sci 2007,28(S2 2):150–155.Google Scholar
  63. Andermann E, Andermann FA: Migraine-epilepsy relationships: epidemiological and genetic aspects. In Migraine and epilepsy. Edited by: Andermann F, Lugaresi E. Boston: Butterworth Publishers; 1987:281–291.Google Scholar
  64. Hauser WA, Annegers JF, Kurland LT: Prevalence of epilepsy in Rochster, Minnesota. Epilepsia 1991, 32: 429–445. 10.1111/j.1528-1157.1991.tb04675.xPubMedGoogle Scholar
  65. Ottman R, Lipton RB: Comorbidity of migraine and epilepsy. Neurol 1994, 44: 2105–2110. 10.1212/WNL.44.11.2105Google Scholar
  66. Bigal ME, Lipton RB, Cohen J: Epilepsy and migraine. Epilep Behav 2003,S2(4):13–24.Google Scholar
  67. Marks DA, Ehrenberg BL: Migraine-related seizures in adults with epilepsy, with EEG correlation. Neurol 1993,43(12):2476–2483. 10.1212/WNL.43.12.2476Google Scholar
  68. Lipton RB, Silberstein SD: Why study the comorbidity of migraine? Neurol 1994,44(S1):S4-S5.Google Scholar
  69. Andermann F, Zifkin B: The benign occipital lobe epilepsies of childhood: an overview of the idiopathic syndromes and of the relationship to migraine. Epilepsia 1998, 39: 9–23.Google Scholar
  70. Andermann F: Migraine and the benign partial epilepsies of childhood: evidente for an association. Epileptic Dis 2000,S1(2):37–39.Google Scholar
  71. D’Agostino DM, Andermann E, Xiong L, et al.: Clinical and pedigree analysis in familial temporal lobe epilepsy. Epilepsia 1998, 39: 177.Google Scholar
  72. Gambardella A, Messina D, Le Piane E, Oliveri RL, Annesi G, Zappia M, Andermann E, Quattrone A, Aguglia U: Familial temporal lobe epilepsy autosomal dominant inheritance in a large pedigree from souther Italy. Epilep Res 2000, 38: 127–132. 10.1016/S0920-1211(99)00080-7Google Scholar
  73. Deprez L, Peeters K, Van Paesschen WV, Claeys KG, Claes LR, Suls A, Audenaert D, Van Dyck T, Goossens D, Del-Favero J, De Jonghe P: Familial occipitaltemporal lobe epilepsy and migraine with visual aura: linkage to chromosome 9. Neurol 2007,68(12):1–8.Google Scholar
  74. Piccinelli P, Borgatti R, Nicoli F, Calcagno P, Bassi MT, Quadrelli M, Rossi G, Lanzi G, Balottin U: Relationship between migraine and epilepsy in pediatric age. Headache 2006,46(3):413–421. 10.1111/j.1526-4610.2006.00373.xPubMedGoogle Scholar
  75. Ludvigsson P, Hesdorffer D, Olafsson E, Kjartansson O, Hauser WA: Migraine with aura is a risk factor for unprovoked seizures in children. Ann Neurol 2006, 59: 210–213. 10.1002/ana.20745PubMedGoogle Scholar
  76. Leniger T, von den Driesch S, Isbruch K, Diener HC, Hufnagel A: Clinical characteristics of patients with comorbidity of migraine and epilepsy. Headache 2003,43(6):672–677. 10.1046/j.1526-4610.2003.03111.xPubMedGoogle Scholar
  77. Lateef TM, Merikangas KR, He J, Kalaydjian A, Khoromi S, Knight E, Nelson KB: Headache in a national sample of American children: prevalence and comorbidity. J Child Neurol 2009,24(5):536–543. 10.1177/0883073808327831PubMed CentralPubMedGoogle Scholar
  78. Ebinger F, Boor R, Gawehn J, Reitter B: Ischemic stroke and migraine in childhood: coincidence or causal relation? J Child Neurol 1999, 14: 451–455. 10.1177/088307389901400708PubMedGoogle Scholar
  79. Verrotti A, Di Fonzo A, Agostinelli S, Coppola G, Margiotta M, Parisi P: Obese children suffer more often from migraine. Acta Paediatr 2012,101(9):e416-e421. 10.1111/j.1651-2227.2012.02768.xPubMedGoogle Scholar
  80. Verrotti A, Agostinelli S, D’Egidio C, Di Fonzo A, Carotenuto M, Parisi P, Esposito M, Tozzi E, Belcastro V, Mohn A, Battistella PA: Impact of a weight loss program on migraine in obese adolescents. European J Neurol 2013, 20: 394–397. 10.1111/j.1468-1331.2012.03771.xGoogle Scholar
  81. Dusser A, Goutieres F, Aicardi J: Ischemic strokes in children. J Child Neurol 1986, 1: 131–136. 10.1177/088307388600100207PubMedGoogle Scholar
  82. Biller J, Mathews KD, Love BB: Stroke in children and young adults. Boston: Butterworth-Heinemann; 1994.Google Scholar
  83. Olesen J, Friberg L, Olsen TS, et al.: Ischaemia-induced (symptomatic) migraine attacks may be more frequent than migraine induced ischaemic insults. Brain 1993, 116: 187–202. 10.1093/brain/116.1.187PubMedGoogle Scholar
  84. Garg BP, De Myer WE: Ischemic thalamic infarction in children: Clinical presentation, etiology, and outcome. Pediatr Neurol 1995, 13: 46–49. 10.1016/0887-8994(95)00108-RPubMedGoogle Scholar
  85. Nezu A, Kimura S, Ohtsuhi N, Tanaka M, Takebayashi S: Acute confusional migraine and migrainous infarction in childhood. Brain Dev 1997, 19: 148–151. 10.1016/S0387-7604(96)00551-7PubMedGoogle Scholar
  86. Wober-Bingol C, Wober C, Karwautz A, Feucht M, Brandtner S, Scheidinger H: Migraine and stroke in childhood and adolescence. Cephalalgia 1995, 15: 26–30. 10.1046/j.1468-2982.1995.1501026.xPubMedGoogle Scholar
  87. Carolei A, Marini C, Ferranti E, Frontoni M, Prencipe M, Fieschi C: A prospective study of cerebral ischemia in the young. Analysis of pathogenic determinants. The National Research Council Study Group. Stroke 1993,24(3):362–367. 10.1161/01.STR.24.3.362PubMedGoogle Scholar
  88. Arruda MA, Guidetti V, Galli F, Alburqueque RC, Bigal ME: Migraine, tension-type headache and attention-deficit/hyperactivity disorder in childhood: a population-based study. Postgrad Med 2010,122(5):18–26. 10.3810/pgm.2010.09.2197PubMedGoogle Scholar
  89. Rasul CH, Mahboob AA, Hossain SM, Ahmed KU: Predisposing factors and outcome of stroke in childhood. Indian Pediatrics 2009, 46: 419–421.PubMedGoogle Scholar
  90. Bigal ME, Kurth T, Hu H, Santanello N, Lipton RB: Migraine and cardiovascular disease: possible mechanisms of interaction. Neurol 2009,72(21):1864–1871. 10.1212/WNL.0b013e3181a71220Google Scholar
  91. Glueck CJ, Bates SR: Migraine in children: association with primary and familial dyslipoproteinemias. Pediatrics 1986,77(3):316–321.PubMedGoogle Scholar
  92. Bottini F, Celle ME, Calevo MG, Amato S, Minniti G, Montaldi L, Di Pasquale D, Cerone R, Veneselli E, Molinari AC: Metabolic and genetic risk factors for migraine in children. Cephalalgia 2006,26(6):731–737. 10.1111/j.1468-2982.2006.01107.xPubMedGoogle Scholar
  93. Schwerzmann M, Wiher S, Nedeltchev K, Mattle HP, Wahl A, Seiler C, Meier B, Windecker S: Percutaneous closure of patent foramen ovale reduces the frequency of migraine attacks. Neurol 2004, 62: 1399–1401. 10.1212/01.WNL.0000120677.64217.A9Google Scholar
  94. Anzola GP, Frisoni GB, Morandi E, Casilli F, Onorato E: Shunt-associated migraine responds favorably to atrial septal repair: a case–control study. Stroke 2006, 37: 430–434. 10.1161/01.STR.0000199082.07317.43PubMedGoogle Scholar
  95. Dalla Volta G, Guindani M, Zavarise P, Griffini S, Pezzini A, Padovani A: Prevalence of patent foramen ovale in a large series of patients with migraine with aura, migraine without aura and cluster headache, and relationship with clinical phenotype. J Headache Pain 2005, 6: 328–330. 10.1007/s10194-005-0223-9PubMed CentralPubMedGoogle Scholar
  96. Pierangeli G, Cevoli S, Zanigni S, Sancisi E, Monaldini C, Donti A, Ribani MA, Montagna P, Cortelli P: The role of cardiac diseases in the comorbidity between migraine and stroke. Neurol Sci 2004,25(suppl 3):S129-S131.PubMedGoogle Scholar
  97. Steenblik MH, Mineau GP, Pimentel R, Michaels AD: Population-based assessment of familial inheritance and neurologic comorbidities among patients with an isolated atrial septal defect. Congenit Heart Dis 2009,4(6):459–463. 10.1111/j.1747-0803.2009.00340.xPubMedGoogle Scholar
  98. McCandless RT, Arrington CB, Nielsen DC, Bale JF Jr, Minich LL: Patent foramen ovale in children with migraine headaches. J Pediatrics 2011,159(2):243–247. 10.1016/j.jpeds.2011.01.062Google Scholar
  99. Chatzikonstantinou A, Wolf ME, Hennerici MG: Ischemic stroke in young adult: classification and risk factors. J Neurol 2011. epubGoogle Scholar
  100. Martinez-Sanchez P, Martinez-Martinez M, Fuentes B, Cuesta MV, Cuellar-Gamboa L, Idrovo-Freire L, Fernandez-Dominguez J, Diez-Teiedor E: Migraine and hypercoagulable states in ischemic stroke. Cephalalgia 2011. epubGoogle Scholar
  101. Kwak C, Vuong KD, Jankovic J: Migraine headache in patients with Tourette syndrome. Arch Neurol 2003,60(11):1595–1598. 10.1001/archneur.60.11.1595PubMedGoogle Scholar
  102. Barabas G, Matthews WS, Ferrari M: Tourette’s syndrome and migraine. Arch Neurol 1984,41(8):871–872. 10.1001/archneur.1984.04050190077018PubMedGoogle Scholar
  103. Lacey DJ: Diagnosis of Tourette syndrome in childhood: the need for heightened awareness. Clin Pediatrics 1986,25(9):433–435. 10.1177/000992288602500901Google Scholar
  104. Debabrata G, Rajan PV, Deepanjana D, Priya D, David RA, Gerald E: Headache in children with Tourette syndrome. J Pediatrics 2012,161(2):303–307. 10.1016/j.jpeds.2012.01.072Google Scholar
  105. Polanczyk G, Lima MS, Horta BL, Biederman J, Rohde LA: The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry 2007,164(6):942–948. 10.1176/appi.ajp.164.6.942PubMedGoogle Scholar
  106. Powers SW, Patton SR, Hommel KA, Hershey AD: Quality of life in childhood migraines: clinical impact and comparison to other chronic illnesses. Pediatrics 2003,112(1 Pt 1):e1-e5.PubMedGoogle Scholar
  107. Biederman J, Faraone SV: Attention-deficit hyperactivity disorder. Lancet 2005,366(9481):237–248. 10.1016/S0140-6736(05)66915-2PubMedGoogle Scholar
  108. Arruda MA, Bigal ME: Migraine and migraine subtypes in preadolescent children: association with school performance. Neurol 2012,79(18):1881–1888. 10.1212/WNL.0b013e318271f812Google Scholar
  109. Breslau J, Miller E, Breslau N, Bohnert K, Lucia V, Schweitzer J: The impact of early behavior disturbances on academic achievement in high school. Pediatrics 2009,123(6):1472–1476. 10.1542/peds.2008-1406PubMed CentralPubMedGoogle Scholar
  110. Shaw M, Hodgkins P, Caci H, Young S, Kahle J, Woods AG, Arnold LE: A systematic review and analysis of long-term outcomes in attention deficit hyperactivity disorder: effects of treatment and non-treatment. BMC Med 2012, 10: 99. 10.1186/1741-7015-10-99PubMed CentralPubMedGoogle Scholar
  111. Galli F, Canzano L, Scalisi TG, Guidetti V: Psychiatric disorders and headache familial recurrence: a study on 200 children and their parents. J Head Pain 2009,10(3):187–197. 10.1007/s10194-009-0105-7Google Scholar
  112. Harpin VA: The effect of ADHD on the life of an individual, their family, and community from preschool to adult life. Arch Dis Child 2005,90(Suppl 1):i2-i7.PubMed CentralPubMedGoogle Scholar
  113. Mattos P, Serra-Pinheiro MA, Rohde LA, Pinto D: Apresentação de uma versão em português para uso no Brasil do instrumento MTA-SNAP-IV de avaliação de sintomas de transtorno do déficit de atenção/hiperatividade e sintomas de transtorno desafiador e de oposição. Rev Psiquiatr Rio Gd Sul 2006,28(3):290–297.Google Scholar
  114. Bordin I, Mari J, Caieiro M: Validation of the Brazilian version of the child behavior Checklist (CBCL). Rev ABP-APAL 1995,17(2):55–66.Google Scholar
  115. Strine TW, Okoro CA, McGuire LC, Balluz LS: The associations among childhood headaches, emotional and behavioral difficulties, and health care use. Pediatrics 2006,117(5):1728–1735. 10.1542/peds.2005-1024PubMedGoogle Scholar
  116. Arruda MA, Bigal ME: Behavioral and emotional symptoms and primary headaches in children: a population-based study. Cephalalgia Int J Head 2012,32(15):1093–1100. 10.1177/0333102412454226Google Scholar
  117. Achenbach T: Manual for the CBCL/4–18 and profile. Burlington, VA: Department of Psychiatry, University of Vermont; 1991.Google Scholar
  118. Goodman R, Scott S: Comparing the strengths and difficulties questionnaire and the child behavior checklist: is small beautiful? J Abnorm Child Psychol 1999,27(1):17–24. 10.1023/A:1022658222914PubMedGoogle Scholar
  119. Villa TR, Correa Moutran AR, Sobirai Diaz LA, Pereira Pinto MM, Carvalho FA, Gabbai AA, de Souza CD: Visual attention in children with migraine: a controlled comparative study. Cephalalgia Int J Head 2009,29(6):631–634. 10.1111/j.1468-2982.2008.01767.xGoogle Scholar
  120. Riva D, Usilla A, Aggio F, Vago C, Treccani C, Bulgheroni S: Attention in children and adolescents with headache. Head 2012,52(3):374–384. 10.1111/j.1526-4610.2011.02033.xGoogle Scholar
  121. Iacovelli E, Tarantino S, De Ranieri C, Vollono C, Galli F, De Luca M, Capuano A, Porro A, Balestri M, Guidetti V, Vigevano F, Biondi G, Drewes AM, Valeriani M: Psychophysiological mechanisms underlying spatial attention in children with primary headache. Brain Dev 2012,34(8):640–647. 10.1016/j.braindev.2011.10.005PubMedGoogle Scholar

Copyright

© Bellini et al.; licensee Springer. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.